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1    INTRODUCTION 
The qualitative behavior of a finite-length periodic array of small antennas or scatterers 
closely spaced along a straight line can be understood in terms of traveling waves, supported 
by the corresponding infinitely long periodic array, and the fields of the feed antenna ele- 
ments) of the array that are not converted to traveling waves [l]-[7]. Consider, for example, 
the linear array (shown in Figure 1) consisting of eight perfectly conducting "dipoles" each 
separated by a distance d along the z axis. The first dipole is fed by a sinusoidal wave with 
frequency u and the other seven dipoles are shorted to form passive straight-wire scatterers. 
The feed dipole radiates time-harmonic (e~VJt,u > 0) fields that are partially converted to 
a traveling wave with ei/3z dependence for discrete values of z along the array separated by 
integer multiples of the interelement spacing d. (To simplify the discussion, assume a single 
traveling wave exists at the frequency a>.) The traveling wave propagates without decay in 
the positive z direction with the real propagation constant ß > 0 that depends on frequency. 
If the electrical size of each element is small enough, the periodic array of elements can 
support only a slow traveling wave with phase velocity less than or equal to the speed of 
light such that ß > k, where k = UJ/C = 2TT/X is the free-space propagation constant, A is the 
free-space wavelength, and c is the speed of light. Without loss of generality, we can assume 
that ßd < 7T because as ßd becomes greater than n the traveling wave simply becomes a 
slow wave traveling in the opposite direction.1 Therefore, ßd satisfies the inequalities 

kd<ßd<7r (1) 

which imply that a traveling wave can exist only if the separation distance between the 
electrically small elements is less than or equal to half the traveling-wave wavelength, which 
is always less than or equal to free-space wavelength A; therefore (d < A/2). A proof of the 
inequalities in (1) for a general linear periodic array of lossless passive small elements is given 
in Appendix A where it is also shown that the fields of a nonradiating traveling wave on a 
linear infinite periodic array must decay exponentially with radial distance from the axis of 
the array. 

The traveling wave excited by the feed element in Figure 1 propagates in the positive z 
direction and diffracts from the right end of the array much like a surface wave (or waveguide 
mode) diffracts from the end of a dielectric rod (or open-ended waveguide) [8], [9]. Part of 
the traveling wave is reflected and part is radiated unconfined by the array. The reflected 
traveling wave, which has e~l/9z dependence, travels the length of the array and diffracts from 
the left end of the array in Figure 1. Again part of the traveling wave is reflected and part 
is radiated. This process of reflection and radiation from the ends of the array continues ad 
infinitum. 

If the propagation constant ß of the traveling wave is appreciably greater than the free- 
space propagation constant k, the traveling wave is strongly attached to the array elements, 
the impedance mismatch of the traveling wave as it encounters free space at the ends of the 
array will be large, and an appreciable amount of power in the incident traveling wave will 

xIf the elements of the array are highly dispersive, it is possible for the direction of power flow in the 
traveling wave to remain in the +z direction for ß > nd. If we then change this positive ß to — ß' (for 
example, if ir/d < ß < 2n/d let ß' = 2ir/d — ß < ir/d), the traveling wave is called a "backward traveling 
wave" [6, pp. 264, 341-349]. 
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Figure 1: Linear periodic array of eight perfectly conducting dipoles separated by a distance 
d along the z axis and fed by a sinusoidal source with frequency u>. 



be reflected. The array will then support a large standing wave at each kd value for which 
the phase of the traveling wave changes by an integer multiple of 360° as the traveling wave 
starts at one end of the array, travels the length of the array, reflects from the other end 
of the array, returns back, and reflects from the starting end of the array. The traveling 
wave will interfere constructively near these kd values and destructively well away from 
these values. Therefore, resonances will appear in the plots of total power radiated by the 
array (or, equivalently, total power accepted by the feed element of the array) versus kd. 
As the value of ß gets closer to the value of k, the traveling wave becomes more weakly 
attached to the array elements and is launched more efficiently from the ends of the array so 
that the resonances caused by the constructive and destructive interference of the traveling 
wave become less pronounced. Moreover, as the value of ß becomes closer to that of k, the 
significant fields of the traveling wave extend an increasingly further radial distance from 
the axis of the array. Therefore, the effective endfire aperture and endfire directivity of the 
array will increase as ß gets closer in value to k (similar to the increase in effective aperture 
and directivity of the HEn surface wave launched from the end of a dielectric rod [8]), until 
ß gets so close in value to k and the traveling wave so broad that it cannot be efficiently 
excited by feeding one or more of the elements. If each element of the array is a small 
resonant antenna (or scatterer) with a narrow frequency band when it radiates (or scatters) 
alone in free space, this single element resonance will be superposed on the resonances of the 
traveling wave [10]. 

The resonances of the traveling wave will disappear for kd greater than the value at which 
the amplitude and phase of the coupling between the array elements will no longer support a 
traveling wave. (According to (1), this value is always less than or equal to 7r for small array 
elements.) For kd greater than this value, the induced excitation of each passive element 
diminishes rapidly with increasing distance from the feed element to the passive element, 
and the periodic array no longer radiates as an "endfire" antenna. 

The foregoing qualitative description of the operation of linear periodic arrays can be 
partly gleaned and partly surmised from the experimental, theoretical, and numerical in- 
vestigations into dipole (Yagi-Uda) arrays, as exemplified in the references [l]-[7]. It is not 
surprising that these previous investigations were limited to dipole arrays in which the num- 
ber of dipoles, their spacing, and their dimensions did not vary over a wide range. The 
accurate construction of a variety of linear arrays and the accurate measurement of their 
near and far fields require an extremely tedious and time consuming experimental effort [1]. 
Purely theoretical analyses of linear arrays have been limited to obtaining approximate so- 
lutions to integral equations for infinite dipole arrays [2], [11]. Although numerical solutions 
to approximate integral equations have been successful for analyzing finite arrays [3], [4], 
[5], they become unwieldy for determining the effects of unrestricted changes in the array 
parameters, especially in large arrays. Even for a small array, an accurate numerical solution 
to the integral equations is very difficult to obtain if the individual elements of the array 
are resonant antennas or scatterers [10]. Moreover, the numerical difficulties increase if the 
elements of the array do not lie in a straight line, such as in closed-loop arrays [12], or if the 
elements are distributed over a surface or throughout a volume. 

The scattering-matrix analysis of linear periodic arrays of electric dipoles given in this 
report was suggested by the corresponding analysis performed by Yaghjian [13] for linear 
periodic arrays of electroacoustic monopole transducers. The basic ideas of this report were 



worked out by Yaghjian within the simpler analytic framework of scalar spherical wave 
functions. The extension to electromagnetic antennas reported here requires the use of the 
more complicated vector spherical wave functions. However, no new concepts are needed 
for our treatment of electromagnetic antennas. In this report we formulate a general vector 
spherical-wave scattering-matrix representation of antennas and derive reciprocity and loss- 
less power conservation relations between the antenna reflection, receiving, transmitting, and 
scattering coefficients that constitute the scattering matrix. We then assume that each array 
element is an electrically small dipole antenna. This specialization of the general framework 
to small electric dipole antennas considerably simplifies the source scattering-matrix analysis 
since only two vector spherical wave modes (one incoming and one outgoing) are required to 
describe the antennas. The scattering matrix involves the receiving, transmitting, and scat- 
tering coefficients of each antenna element, as well as the input reflection coefficient of the 
waveguide mode feeding each antenna. However, for a linear periodic array, the reciprocity 
and lossless power conservation relations reduce the critical scattering-matrix variables in 
the N equations for the N unknown outgoing wave coefficients of the array elements to one 
single parameter, the phase of the effective scattering coefficient of each antenna element. 
(The number of elements N and the normalized spacing kd of the elements in the linear 
periodic array are the other critical variables in the equations.) 

The magnitude of this effective scattering coefficient does not enter the equations because 
reciprocity and power conservation demand that the magnitude |5e| and phase ipe of the 
effective scattering coefficient (Se = ISele*^) satisfy the simple relationship 

|5e| = -sinVe (2) 

which implies that 0 < ijje < IT and that t/je approaches 0 or 7r as the magnitude of the 
scattering coefficient approaches zero. We also prove regardless of reciprocity and power 
conservation relations that an infinite linear periodic array of short electric dipole antennas 
oriented perpendicular to the array axis can support a nondecaying traveling wave only 
if the relationship (2) is satisfied. Remarkably, in contrast with the acoustic monopole 
case, it is possible to have two traveling waves for each value of ipe. A simple implicit 
transcendental equation determines the kd — ßd diagram for these traveling waves. The 
theoretical propagation velocity of the traveling wave supported by a periodic array of short 
thin wires obtained from the kd — ßd diagram in combination with values of the effective 
scattering coefficient of the wires calculated using the NEC computer code [26] are shown to 
compare well with the measurements of Ehrenspeck and Poehler [1] for the case of Yagi-Uda 
arrays. 

All of the properties exhibited by finite linear periodic arrays explained in the first part 
of this introduction are clearly and conveniently demonstrated by solving the N x N matrix 
equation for these arrays as the value of the phase ij)e of the effective scattering coefficient is 
varied from 0 to 7r and the value of kd ranges from 0 to 7r (that is, over the range of kd at 
which a traveling wave can exist). In addition, we confirm the result, found experimentally 
by Ehrenspeck and Poehler [1] and predicted theoretically by Hansen and Woodyard [14], 
that the maximum endfire directivity attainable by varying the number of elements in a 
linear periodic array of electrically small elements supporting a single traveling wave (and 
having one feed element) depends only on (and increases monotonically with) the relative 



phase velocity of the traveling wave. 
The remainder of the paper is divided into eight main sections in addition to the Conclud- 

ing Remarks (Section 10) and the Appendices. The reader interested in just the equations 
and results for linear periodic arrays of small electric dipoles oriented perpendicular to the 
array axis, and not in how they are derived, can concentrate on Sections 6 and 7, which dis- 
cuss infinite and finite arrays, respectively. Section 2 introduces the basic field equations and 
the vector spherical-wave source scattering-matrix description of a general electromagnetic 
antenna system. Sections 3 and 4 derive reciprocity and lossless power relations, respec- 
tively, that must be satisfied by the coefficients of the scattering matrix of a general linear, 
reciprocal, lossless antenna. Section 5 applies these reciprocity and power relations to the 
small electric dipoles that are used in Sections 6 and 7 for the analysis of infinite and finite 
arrays of dipoles oriented perpendicular to the array axis. Sections 8 and 9 consider arrays 
of dipoles aligned with, and skew to, the array axis. 

2    SOURCE SCATTERING-MATRIX DESCRIPTION 
OF A GENERAL ANTENNA 

The electromagnetic system under consideration is pictured in Figure 2. The antenna is 
bounded by the closed surface AT- The electromagnetic power supply or detector is bounded 
by the closed surface Ap and the power supply feeds the antenna through a waveguide with 
reference plane AQ common to both AT and Ap. The power supply sends time-harmonic 
(e_tarf, oj > 0) electromagnetic power down the waveguide in the form of a single propagating 
waveguide mode. (The waveguide is assumed to be composed of perfect conductors separated 
by a linear, homogeneous, isotropic medium.) The antenna converts the electromagnetic 
fields of the waveguide mode into time-harmonic electromagnetic fields that propagate in 
the free space in which the antenna and its power supply or detector are placed. The space 
between the spherical reference surface Ar with radius r and the external surface AE = (AT— 

Ao) + (Ap — Ao) of the antenna plus power supply or detector contains no electromagnetic 
sources, although arbitrary time-harmonic electromagnetic sources at frequency u, such as 
other antennas, may exist outside Ar. It is assumed that the external part of the surface of the 
power supply or detector (Ap—A0) is electromagnetically shielded so that no electromagnetic 
power crosses (Ap — Ao). 

The Maxwell equations that govern the time-harmonic electromagnetic fields in the 
source-free free space between the surface AE and the spherical surface Ar are [15, sec. 
7.1] 

V x E(r) = ikZoB. (3a) 

V x H(r) = -ikE(r)/Z0 (3b) 

which imply that for k ^ 0 
V-E(r) = 0 (3c) 

V • H(r) = 0 (3d) 

where E(r) and H(r) are the electric and magnetic fields, Z0 is the free space impedance, 
k = UJ/C = 2ir/\ is the free space propagation constant, A is the free-space wavelength, and 
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Figure 2:  Schematic of the electromagnetic antenna system.   The external surface of the 
power supply or detector is given by AE = (AT — A0) + {Ap — AQ). 



c is the speed of light. Eliminating either H(r) or E(r) from the Maxwell equations (3a) and 
(3c) yields the vector wave equations 

-V x V x E(r) + k2 E(r) = 0 (4a) 

-Vx VxH(r) + fc2H(r) = 0 (4b) 

which imply 
V2E(r) + Jfc2E(r) = 0,  V-E(r) = 0 (5a) 

V2H(r) + fc2H(r) = 0,  V-H(r) = 0. (5b) 

Since the electric field satisfies (5a) across the surface Ar (which lies within free space), 
the electric field on the surface can be expanded in a complete set of divergenceless vector 
spherical wave functions [15],[16] 

oo     i 

E(r) = £ £ [«i2M<2(r) + &$»<?) + ogl^r) + b%N%(r)}. (6) 
1=1 m=-l 

The spherical-wave expansion of the magnetic field then follows from (3a) 

oo        I 

H(r) = -iYo£ £ [«£><>« + CNS(r) + a^M^(r) + b%M%(r)},        (7) 
1=1 m=-l 

where Y0 = 1/Z0 is the free-space admittance. The vector spherical harmonics M^(r) and 
NJ^(r) are defined in Appendix B. The MJ^(r) spherical wave functions have no radial 
component. Because ofthat the Mj^(r) functions in (6) and the N)^(r) functions in (7) are 
often referred to as TE waves while the N}^(r) functions in (6) and the M/^(r) functions in 
(7) are often referred to as TM waves; they satisfy the equations 

N£(r) = iv x M»(r) (8a) 

MS(r) = ivxN«(r). (8b) 

The MJj2(r) and N^(r) have the radial dependence ji(kr) while the M^(r) and NJ^(r) have 
the radial dependence hi(kr) where Ji(kr) and hf'(kr) are the spherical Bessel functions 
and the spherical Hankel functions of the first kind, respectively. The expansions in (6) and 
(7) are known as multipole expansions. The 1 = 1 terms are the dipole terms, the I = 2 terms 
are the quadrupole terms, etc. The summations containing the modal coefficients a}^ in (6) 
and (7) equal the electromagnetic fields produced by the sources (applied and induced) that 
reside outside the surface Ar. The summations containing the modal coefficients &}£, in (6) 
and (7) equal the electromagnetic fields produced by the sources (applied and induced) that 
reside inside the surface Ar or, equivalently, inside the external surface AE of the antenna 
plus power supply or detector. They are the fields radiated and scattered by the antenna 
and its power supply or detector. 



The tangential electric and magnetic fields [Etan(p),Htan(p)] on the reference plane A0 

of the feed waveguide can be written in terms of the electric and magnetic basis fields 
[e0(p), h^p)] of the single propagating waveguide mode with incident amplitude a0 and 
emergent amplitude b0; specifically 

Etan(p) = VQe0(p),     Hton(p) = /0ho(p) (9) 

where 
Vo = o0 + 60,      h = %(°o - M- (10) 

There may be evanescent modes in the feed waveguide, but the fields of these evanescent 
modes are assumed to be negligible on the reference plane A0. 

If the dimensional units of e0 and h(, are chosen as (meter)-1 and they are consistent 
with Maxwell's equations in the International System of mksA units, then Vo has units of 
Volts, J0 has units of Amperes, and the characteristic admittance r]0 of the waveguide can be 
chosen as a real positive constant with units of (Ohm)-1. It then follows that normalization 
of the basis fields may be expressed as a nondimensional number equal to one, that is 

/>< 
[e0(p)xh0(p)]-n0^ = l (11) 

Ao 

where HQ is the inward normal to the antenna on the plane A0. If the plane A0 simply cuts 
two wire leads at quasi-static frequencies, Vo and I0 refer to conventional circuit voltages 
and currents that do not serve as genuine modal coefficients. In that case, the equations in 
(10) become definitions of a0 and 60 such that 

a0 = (Vo + /0/%)/2,      6o = (Vb-V%)/2- (12) 

The "outgoing" modal coefficients (60, &j^) of the antenna system are related to the "in- 
coming" modal coefficients (a0, a£^) of the antenna system by a linear matrix transformation 
termed the "source scattering-matrix equations" [17], [18] for the spherical-wave representa- 
tion of the antenna. These source scattering-matrix equations can be written as 

M^+EEEÄ (is) 
1=1 m=—I s=l 

J'=l m'=-l' s'=l 

The coefficients R^, TJ£, and s£2$2 in the source scattering matrix embody the receiving, 
transmitting, and scattering properties of the linear antenna. The complex number T is the 
reflection coefficient (phase referenced to the plane A0) of the waveguide mode and equals 
bo/a0 when all sources outside the external surface AE of the antenna and its power supply 
are zero, in other words, when there are no sources outside Ar so that all the afm equal zero. 

The spherical-wave source scattering matrix given in (13)-(14) for electromagnetic anten- 
nas differs from the classical spherical-wave scattering-matrix given in [19, sees. 9.18-9.24] 



because the classical scattering matrix uses (h\ \h\') radial basis functions in (6) and (7) 
instead of (ji,h\'). This small mathematical change from h\ to ji appreciably simplifies 
the analysis by relating all the scattering-matrix coefficients directly to the physical sources. 
For example, if an antenna with its power supply or detector does not scatter fields produced 
by external sources, then the source scattering coefficients S^Ym' are equal to zero. This 
is not the case for the classical spherical-wave scattering-matrix description of antennas [20, 
sec. 2.3.5]. 

Finally, note that for a scatterer rather than an antenna, we can set TJ£ and R^ equal 
to zero and equation (13) becomes superfluous. 

3    RECIPROCITY RELATIONS 
The receiving, transmitting, and scattering coefficients in the source scattering matrix for 
antennas composed entirely of reciprocal material must satisfy reciprocity relations that can 
be derived from the following electromagnetic reciprocity theorem [21, sect. 1.9] 

J [E2(p) x Hx(p) - Ex(p) x H2(p)] • fiodA = J [E2(r) x Hx(r) - Ex(r) x H2(r)] • MA 
Ao Ar 

(15) 
where [E!(p),Hi(p),Ei(r),Hi(r)] and [E2(p),H2(p),E2(r),H2(r)] are the fields of the an- 
tenna excited by any two sets of electromagnetic sources located inside the power supply or 
outside the spherical surface Ar. 

Substituting the electric and magnetic fields on AQ in the waveguide from (9)-(10) into 
the left-hand side (LHS) of (15), and then using the integral relation (11) we find that the 
LHS of (15) is equal to 

2% (&20«io - ftloa20) • (16) 

Substituting the electric and magnetic fields on Ar from (6) and (7) and using the orthogo- 
nality relations [20, Eq. Al.71] (see (124),(125)) 

j J [M£(r) x Mg(r)] • f sm0d9d<f> = 0 (17a) 
o o 

2TT ■K 

J J [Nj£(r) x N$(r)] • trinftttcty = 0 (17b) 
o o 

we see that all integrals of cross-products involving M^(r) x Mj^(r) and NJ^(r) x N^(r) 
can be set equal to zero. If, in addition, we make use of the reciprocity integral relations [20, 
Eqs. A1.72-A1.74] (see (124),(125)) 

/ [M£(r) x Njg(r) - M«(r) x N«(r)] • rfS = Slx5m,J-=^-A^ (18a) 



/ [N£(r) x Mg(r) - NJftr) x M«(r)] • dS = fo^L_i_-AW> (18b) 
s 

where A*1'1) = 0, J4<
1,2)

 = i, A^2'1) = -i, v4(2,2) = 0 and the surface of integration in (18a) and 
(18b) is a spherical surface S of radius r with outward area element dS = Tr2sin6d9d(f>, we 
find that the right-hand side (RHS) of (15) is equal to 

yof f /   iy»+iL(i) Ä(i)     _/,(D  „(i)     +fl(2) A(2)     _&<2)  a(2)    1        fi9l la 2^   2^  V   !; [a2;Im°l;I,-m       02;I,mOl;Z,-m + a2;Im°l;I,-m       °2;l,ma2;l,-mJ *.iyJ 
fc2 

1=1 m=-I 

oo      I        2 
Letting E = E   E   E and equating (16) with (19) we obtain 

Ims       1=1 m=—I s=l 

2% (b20al0 - 6loa2o) = | E(-l)m+1 [«£UÄ-m " *8Wt«J • (20) 
Ims 

Substituting expressions for 620, &i0» feS-m> Md 4§,m from the source scattering-matrbc equa- 
tions (13) and (14), the equation (20) becomes 

OloE 
Ims 

2„ DW      (-1)m+1^°TW zVonlm ~ £2 JI,-m 
(a) V^ 

a2;Im - °2o 2^ 
ims 

'an»»    (-1)m+ly°rw 
m 

(«) 
al;/m 

^Vr  nW   C    1 ^m+1 c(*).(«')    „(*') -I2Z^   2^   a2;InA~~-U •"'l-mil'm'«!;!'™' 
Ims I'tn's' 

i^0r v^'   c iw+icj(s),(s').(ä')   _n 
+ ~j~2 £*,  /L,  al;l,-m\~l) öl,m;l'm'a2;l'm' ~ U- (21) 

Ims I'tn's' 

By rewriting the indices of the fourth term we then obtain 

GioE 
Ims 

^O^Im U iI,-i fc2 
00 V^ a2;lm - a2o 2^ 

Ims 
2voR\Z - 

M  (-ir^o^(s) 
k2 

l
l,-m al;Im 

-SEE 4L [(-ir+lÄL - (-i)m'+1^^ J «ift,=o. (22) 
Ims I'm's 

Since the modal coefficients ai0 and a2o are determined by the power supply connected to the 
waveguide, and the modal coefficients a^m and a2^ are determined by the sources outside 
Ar, they can all be chosen independently. Therefore (22) can hold for all values of the 
modal coefficients if and only if the quantities in each of the sets of square brackets are zero. 
Specifically, the receiving, transmitting, and scattering coefficients of the source scattering 
matrix must satisfy the reciprocity relations 

^O^Im -  ^ 1l- (23) 

/    i \m o(»).(»')       _ f_-i\m' o(s'),(s) (<2A\ 
\-L)   ül,-m;l'm' ~ \    L)     ül',-m';lm- \^> 

The reciprocity relation (23) states that the spherical-wave receiving coefficients of an 
antenna containing only reciprocal material are equal to a constant times the spherical-wave 
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transmitting coefficients. The reciprocity relation (24) states that the fields scattered into 
one outgoing spherical mode, when another spherical mode is incident upon the antenna, 
remain the same if the mode numbers of the incident and outgoing modes are interchanged. 
For a scatterer rather than an antenna, TJ£} — R\^ = 0 and only the reciprocity relation 
(24) is relevant. 

4    POWER CONSERVATION RELATIONS 
Conservation of power also places restrictions upon the coefficients of the scattering matrix. 
If the antennas are lossless, the net average power flowing across the reference plane A0 of the 
waveguide toward the antenna must equal the net average power flowing out of the spherical 
surface Ar. Mathematically, this conservation of average power flow can be expressed from 
Poynting's theorem as 

^Re J [Etan(p) x UIM\ ■ Ti^dA = iRe j [E(r) x H*(r)] • dS. (25) 
Äo Ar 

Inserting Etan(p) and Htan(p) from (9)-(10) into the left hand side of (25), and then using 
the integral relation (11) the LHS of (25) is found to equal 

hh (kl2 - N2) (26) 

To evaluate the RHS of (25) we begin by substituting the vector spherical wave function 
expansions of E(r) and H(r) given by (6) and (7). We then use the orthogonality relations 
[16, Eqs.VI-7,VI-8] together with [15, Eq.9.121], and [16, Eqs.VI-6,VI-7] together with [15, 
Eq.9-120], along with the Wronskian formulas for spherical Bessel and Hankel functions to 
show that the RHS of (25) is equal to 

^oE[l^|2 + Re(6SaS*)]. (27) 
ZK        Ims 

Equating (26) and (27) we obtain the conservation of power relation 

\vo (KI2 - M2) = ~% £ [\& + Re (*&£*)] • (28) 
Ims 

If the antenna neither radiates nor scatters, the o£l modal coefficients would all be zero and 
the net average power crossing the sphere Ar would be zero, even though the o}„ modal 
coefficients generated by electromagnetic sources outside AT may not be zero. In that case, 
the average power entering the surface AT would equal the average power leaving. With the 
right hand side of (28) zero, the left hand side must also be zero for this lossless antenna, 
and all the power in the waveguide mode propagating toward the antenna is reflected back 
down the waveguide (|6o|2 = kl2)- 
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When the 60 and b\^ modal coefficients from the source scattering-matrix equations (13) 
and (14) are substituted into (28), this equation can be written as 

~rj0k
2 

\an 
Y0 

(1 - |r|2) 
Ims 

Wl2 

I'm's' 
2_s  blm;l'm'al'm'     + ne  2-j  ölm;l'm'al'm'alm 

I'm's' 

lmulm 
I'm's' 

rp{s) Ms) 
;i'm' al'm'  I = 0.        (29) 

Because the modal coefficients a0 and a^ can be chosen independently, let all the a}^ equal 
zero to get from (29) the first power relation 

lr£f = ^ (1 - |r|2). 2—1 \Llm I 
Ims Yo 

(30) 

Next, let a0 = 0 to show that the quantity inside the second set of square brackets in (29) is 
zero. Since all but any one of the a£2 can be chosen zero, the quantity in the second set of 
square brackets in (29) can vanish for all a}„ only if 

Rp (*WM\ ,   v kW-(3') I2 - -V^fi |/?W|2 mi Ke \yim-M) +   2L,   \bl'm';lm\    ~ y^ \Klm\   • \ölJ 
I'm's' 

Lastly, the quantity inside the third set of square brackets in (29) must be zero because the 
quantities inside the other two sets of square brackets are zero. All but one aüa£l at a time 
can be chosen zero and the one nonzero a0a^l can be given a purely real or purely imaginary 
value in order to reveal a third power relation 

rps 
±lm 

2 I'm's' 

rp{s') q\ 
Il'm'ö> 

(s'),(s)* 
lm;l'm' -LKlm Yo 

(32) 

The power relation (30) expresses mathematically that, in the absence of exterior sources, 
the total power radiated by a lossless antenna equals the power supplied to the antenna 
through the waveguide. The power relation (31) implies that the total power received by a 
lossless antenna that is not transmitting can always be related to the scattering coefficients 
of the source scattering matrix. The power relation (32) shows that for lossless antennas 
the product of the reflection coefficient and each receiving coefficient of the source scattering 
matrix is linearly related to the corresponding transmitting coefficient and the sum of prod- 
ucts of all the transmitting and scattering coefficients. This last power relation, which comes 
from the cross coupling terms in the quadratic power expression (29), has no immediately 
obvious physical interpretation. 

For lossless scatterers rather than lossless antennas, TJ£ = i2J„ = 0 and |r| = 1 so that 
the power relations (30) and (32) vanish and (31) becomes 

Ke {ülm;lm) +   2-,   Pl'm';lm|    ~ U" (33) 
I'm's1 
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5    SHORT Z DIRECTED ELECTRIC DIPOLES 

We now specialize the general vector spherical wave expansions (6) and (7) and the source 
scattering-matrix equations (13) and (14) to the case of a short z directed electric dipole 
antenna. The electric and magnetic fields of an elementary electric (Hertzian) dipole antenna 
are proportional to N^ (r) and — rioM^ (r), respectively. Explicit expressions for these 
outgoing vector spherical waves are [16, pp. 40-41] 

NS>(r) ih{i\kr) 
kr {h cos 0r — i 

1     d 
kr d(kr 

-[krh?\kr)]±^sin9d, (34a) 

-iY0M
{S(r) = Y0h?\kr)y^sm64>. (34b) 

Substituting expressions for the spherical Hankel functions, we find the r and 0 components 
of N^o (r) are given by 

r(2) JVJ&M 

(2)_M - 

COS0 

JVJ&M = {krfMh^ 
and similarly 

-inMg>) = -y0£(i + £)igsM. 

(35a) 

(35b) 

(35c) 

Equations (35a)-(35b) and (35c) are the components of the electric and magnetic fields, 
respectively, of a z directed electric point-current source (Hertzian dipole) [22, p. 436]. The 
electric fields incident upon the antenna from sources outside Ar are given by the incoming 
NJJ(r) and MJJ(r) terms in (6). If the dimensions of the antenna (and its power supply or 
detector) are appreciably smaller than a wavelength, and the origin of the coordinate system 
is centered on the antenna, the incident electric field over the region of space occupied by 
the antenna (r •C A) can be well approximated by just the N^r) modes because the 
electric fields of all the other modes approach zero as kr approaches zero. Additionally, as 
kr approaches zero NJ ±i(r) have only an x and y electric-field component. Moreover, if we 
assume that the scattered fields of the electric dipole antenna are also electric dipole fields, 
(6) shows that the z component of the electric field just outside the antenna is given by 

EZ(T) = [a$N$(r) + ^N§(r)] • z,      kr « 1 (36) 

which can be expanded as 

^(r)=42o)i1 cos 0? + - 
kr 

sin 00 •z, (kr)2, 
Ar<l.   (37) 

13 



pO_:   / !   _(2) 

If we let E% refer to the incident electric field at the center (origin) of the antenna, that is 

(38) 
V 07T 

and let b refer to the coefficient of the eikr/(kr) radiated electric field, that is 

H& (39) 

(37) becomes 

gifcr 

Ez(r) = E°z-b— 2i {h + Wy)cos6*+(1 + Vr {kry 
sin 00 •z,  kr«l. (40) 

We note that the 6-term in (40) that is dotted into z, which gives the electric field radiated 
and scattered by the small electric dipole antenna, holds for all kr outside the antenna. 

Since all the Tf£ are zero except T$ for an antenna that radiates as an electric dipole, 
the reciprocity relation (23) demands that all the R\^ are zero except Rio'. Also, with all 
the b\% and T^ zero except when / = l,m = 0, and s = 2, (14) and the reciprocity relation 
(24) imply that all the S}*^^ are zero except Sffliffl. Thus, the source scattering-matrix 
equations (13) and (14) for such an electrically small z directed dipole reduce to 

b0 = ra0 + RE°Z (41) 

b = Ta0 + SE° (42) 

in which the renormalized receiving, transmitting, and scattering coefficients for the small z 
directed electric dipole antenna are defined as 

p       R™        rr_li[3T(2)      q_    .3e(2),(2) R = 77=p  T - -y —T10 ,  b - -i-b10.w . (43) 

The reciprocity relation (24) reduces to an identity for the small z directed electric dipole, 
and the reciprocity relation (23) becomes 

(44) 

The power relations (30)-(32) for the electrically small lossless z directed dipole simplify 
considerably to 

Y04TT2 

lm(S)-l\S\2 = 
3'-'  =^lRl 

&+k)- 
Y04v 

y047r 
FR* 

(46) 

(47) 
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The reciprocity relation (44) can be used to eliminate R in (46) and (47), so that they can 
be written as 

Ira(S)-2-\S\2 = ^2\Tf (48) 

T{\i + lS*) = lirT*- (49) 

Taking the absolute value and then squaring both sides of (49) produces (48) after \T\2 is 
substituted from (45) . Therefore, (48) is redundant, and we are left with three indepen- 
dent equations obtained from the reciprocity and power conservation relations for a small, 
reciprocal, lossless z directed electric dipole antenna, namely equations (44), (45), and (49). 

Writing T in (44) and (49) as iTle1^ shows that the transmitting, receiving, and scat- 
tering coefficients can be expressed merely in terms of the reflection coefficient T = |r|e'^r 
and the phase ipT of the transmitting coefficient; specifically 

^=^\S^/^ZWe^ (50) 

* = #\Zifv/^e* PI) 
S=^i(-|r|e«a*r-'W + l). (52) 

The eight scalars needed to specify the magnitudes and phases of T, R, S, and T have been 
reduced by means of the reciprocity and power relations to three scalars (the magnitude 
and phase of T and the phase of T). If the reference plane A0 in the waveguide feeding the 
antenna is shifted by a distance £, the phases of T and T shift by ßo£ and 2ß0£, respectively, 
where ß0 is the propagation constant of the waveguide mode. Therefore, (52) confirms that 
the phase of the scattering coefficient S does not change by shifting the waveguide reference 
plane A0. 

For a lossless scatterer rather than a lossless reciprocal antenna, T = R = 0, \T\ = 1, and 
(50)-(52) are replaced by the one lossless power relation in (48) with T = 0: 

|5|2 = ^Im(5) (53) 

or letting S = \S\d* 

|.9| = |smV (54) 

a relationship we shall discuss in the next section. 

6    INFINITE LINEAR PERIODIC ARRAY OF SMALL 
PASSIVE ELECTRIC DIPOLE ANTENNAS PER- 
PENDICULAR TO THE ARRAY AXIS 

The transmitting, receiving, and scattering coefficients found in Section 5 for a small, recip- 
rocal, lossless z directed electric dipole antenna determine the propagation constants of the 
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traveling waves that may exist on a linear periodic array of these antennas. To obtain an 
explicit expression for the dependence of the traveling-wave propagation constant ß on the 
T, R, and S of the antennas composing the array, as well as on the normalized spacing kd 
of the antennas, consider an infinite linear periodic array of small z directed passive electric 
dipoles equispaced along the x-axis, each satisfying the scattering-matrix equations (41)-(42) 

b% = ra£ + REf? (55) 

bn = Ta^ + SE? (56) 

where the subscript n denotes the nth dipole in the infinite array. The dipole antennas are 
both passive and lossless in that they contain no active or lossy material and each of their 
feed waveguides are terminated in a perfectly reflecting load with reflection coefficient given 
by TL = e!^, such that 

an
0=TLbn

Q=JM% (57) 

or 
bn

Q=e-^al. (58) 

Substituting b% from (58) into (55), solving for a%, then using the resulting ag in (56), we 
find bn in terms of E? 

bn = SeEf? (59) 

where the "effective" scattering coefficient is defined as 

Ä = 7^b+S- (60) 

For a linear array of scatterers rather than antennas, we have T = R = 0 and |r| = 1, so 
that bn = SE™ and Se = S. The linear relationship between the amplitude bn of the nth 
small z directed dipole and the incident electric field E™ at the nth dipole is similar to the 
linear relationship between the amplitude of the electric dipole moment and the incident 
electric field used in the discrete-dipole approximation for computing scattering by dielectric 
particles [23], [24]. In this previous discrete-particle scattering work, a full scattering-matrix 
description was not formulated and neither reciprocity nor power conservation was explicitly 
applied to reduce the number of variables and required computations. 

The field E? is the electric field incident upon the nth small dipole from all the other 
dipoles. For an infinite array of small z directed electric dipole antennas equally spaced a 
distance d along the x axis, this incident field Ef1 can therefore be expressed as a summation 
of the outgoing fields of all but the nth dipole antenna (see (40)) 

E?= Eh6 
,=-»    kd\j-n\ 

1 + ,   ,. . r + 
Ard|i-n|     {kdf\j-n\2 n = 0,±1,±2, ... ±oo.    (61) 

Inserting Ef1 from (61) into (59) produces an infinite set of linear equations for the unknown 
outgoing modal coefficients 

+oo '\kd\j-n\ 
bn = Se J2 b 

,=-«,    kd\j - n\ 
1 + ,   „ . , + JM|.7-n|     (kd)2\j-n\2 
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The effective scattering coefficient Se defined in (60) has some remarkable properties. It 
is the one parameter in (62), besides the normalized separation distance kd, that determines 
the characteristics of the fields on the linear infinite periodic array of small electric dipoles. 
Moreover, if the electric dipoles composing the array are reciprocal and lossless, the T, R, 
and S in the equations (50)-(52) can be inserted into (60) to show that the magnitude and 
phase of Se = IS^Ie1^ obey the simple relationship 

|5e| = rsinV'e (63) 

Consequently, ipe and kd are the only two independent scalar parameters in the equations 
(62) that determine the characteristics of the fields supported by the infinite linear periodic 
array of small z directed electric dipole antennas. Because (63) demands that sini/>e > 0, 
the range of ipe is limited to 

0 < ij)e < fr- (64) 

We also note that the magnitude and phase of Se are not changed by shifting the reference 
plane AQ in the feed waveguide. This result is proven directly from (60) using the facts that 
the phases of T and T*L shift by 2ß0i, the phases of T and R shift by ßot, and the phase of 
S remains unchanged (as explained in Section 5) when the reference plane AQ is shifted by 
a distance L (ßo is the propagation constant of the waveguide mode.) 

We shall now use (62) to determine an equation for the traveling-wave propagation con- 
stant ß as a function of kd and ipe. In so doing, we shall also prove that the relationship (63) 
is not only a consequence of reciprocity and losslessness, but it is a relationship that must be 
satisfied by the array elements if the array supports a traveling wave. If the array supports a 
traveling wave with real positive propagation constant ß, the bj in (62) are identical except 
for a phase shift given by 

bj = boeißjd (65) 

which allows (62) to be rewritten in the form 

+oo 
(kd)3 = Se £ e

i/w(j'-n) 

j=—oo 

gik<i|.7-n| 

\j ~ «I 
(kd)2 + 

kdi 

\j - n\     \j - n\2 ,   n = 0,±l,±2, ... ±oo. 

(66) 
Each equation in (66) for each different n is identical because the integer index j in the 
summation ranges from —oo to +00. Therefore, simplify (66) by setting n = 0 to get 

(fcd)3 = Se£ 
i=l L 

ei(fc+/3)di        ei(fc-/J)d/ 

 : + :  (kd)2 + 
kdi 

(67) 

Using the summation formulas [25, sec. 1.441, eqs. 1 and 2; sec. 1.443, eqs. 3 and 5] 

E cos na 

n 
lIn 1 
2     2(1-cos o) 

= - In [2 sin(a/2)],    0 < a < 2ir (68a) 

E sin na 

n 

ir — a 
0 < a < 2TT (68b) 
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^2, cos na     7T2     7ra     a2 

= iL_^ + "      0<a<27r (68c) 
£j    n2 6       2       4 
00 sin na     7r2a     7ra2 . a3 
E Olli I tu. /I    U IIU        ,     U _ _ /MJ\ 

i=1-^ = ir--+T2' 0<a<2n (68d) 

and the approximations (see Appendix C) 

Y ^p s F/0) w _o.i381 sin a + 0.03212 sin 2a - 0.9653a ln(o/ir),    0 < a < TT    (69a) 
3=1      U 

F(a) = -F(2TT-a),   TT < a < 2TT (69b) 

and 

V ^^ = G(a) fa 1.3328 - 0.1424 cos a + 0.01094 cos 2a + 0.4902a2 In(o/?r) - 0.2417a2, 
j=\    n 

0 < a < TT (69c) 

G(a) = G(2TT - a),   TT < a < 2TT (69d) 

(67) is reduced to 

{kdf/Se = -(fca")2 ln[2(cos kd - cos 0d)] - kd [F(kd + ßd) - F(ßd - kd)} - 

[G(kd + ßd) + G(ßd-kd)]-ä(kd)3,   kd<ßd. (70) 

Writing Se as ISde^", equating the real and imaginary parts of (70), and dividing the two 
resulting equations, one obtains 

\Se\ = ^siml>e,   kd<ßd (71) 

and 

|(fcd)3cosVe + {(-(fcd)2ln[2(cosÄ;d-cos/?d)] - (kd) [F(kd + ßd) - F(ßd-kd)] 

-[G(kd + ßd) + G(ßd-kd))}smipe = 0,   kd<ßd. (72) 

We emphasize that the equation (71), which was previously derived as (63) using the reci- 
procity and lossless power conservation relations, has been derived without explicit reference 
to reciprocity or losslessness. It emerged simply, and rather unexpectedly, as a necessary 
condition for the array equations (62) to have a traveling-wave solution. For lossless scat- 
terers rather than lossless reciprocal antennas, Se = S and (71) becomes identical to (54), 
which was found previously from the power relation for lossless scatterers. 

The equation (72) gives an implicit expression for the propagation constant ß of the 
traveling wave supported by the linear periodic array of lossless, passive, electrically small 
dipoles as a function of the normalized spacing kd of the z directed short dipole antennas 
and the phase ipe of the effective scattering coefficient. Although a closed-form expression 
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cannot be found for ßd as a function of kd and ipe as was possible for a linear periodic array 
of lossless, passive, acoustically small isotropic antennas [13], the implicit expression (72) 
can be solved numerically for ßd given kd and ipe. Curves of ßd vs kd are plotted in Figure 3 
for different values of t/je ranging from 10° to 170°; see (64). All the curves have one branch 
that begins at ßd equal to approximately 1.44, the value for which G(ßd) = 0 so that (72) 
is satisfied when kd = 0. All curves for rpe less than about 64° have two branches. For the 
curves for ipe less than about 58° one branch begins by being extremely close to the line 
ßd = kd. Of note is the possibility of two distinct traveling waves that can exist for the 
same normalized spacing kd and effective scattering coefficient phase ipe. If, for example, we 
follow the line kd — 1 we see that it intersects the branches of the ipe = 45° curve in two 
places corresponding to two distinct values of the traveling wave propagation constant ß. 
The possibility that two distinct traveling waves can be excited is quite different from the 
behavior encountered when an infinite array of isotropic acoustically small transducers was 
studied for which only one traveling wave can be excited [13]. By referring to the definition 
of Se in (60), we see that the phase ipe (and magnitude) of Se can be adjusted by changing 
the phase ipL of the reflection coefficient of the perfectly reflecting loads that terminate the 
feed waveguides of the passive dipole elements of the array. This adjustment can be done, 
in principle, by changing the lengths of the feed waveguides, or by changing the material 
properties of the terminating loads. However, unless the dipoles are fed through a ground 
plane, it may be difficult in practice to appreciably vary i/)e in this way and keep the dipole 
spacing small enough to maintain a traveling wave. In general, the scattering phase ipe of an 
electric dipole will change with frequency. In that case, the propagation constant ß of the 
traveling wave can be varied without changing ipe if the separation distance d of the array 
elements is varied while holding the frequency fixed. 

In a laboratory, measurements of the propagation constant of a traveling wave and its 
variation with the electrical spacing of the array elements, kd, could be efficiently performed 
by varying the frequency, keeping the dipole length and dipole separation constant. In 
this case the ratio of the length of the dipoles to the separation of adjacent dipoles, 2h/d, 
would be fixed as would the ratio of the wire radius to the wire length, p/h. Examples 
of the theoretical kd — ßd curves are illustrated in Figure 4 in which three kd — ßd curves 
corresponding to different values of 2h/d and with p/(2h) = 0.1 are shown. The curves begin 
at the line ßd = kd and end when ßd = ir. A unique value of the traveling wave propagation 
constant ß is associated with a given value of kd. The group velocity dk/dß is positive for 
all three curves. These calculations require values of the phase, ipe, of the effective scattering 
coefficient as a function of h/X for fixed p/h. These values can be obtained using standard 
scattering codes such as NEC [26] and CICERO [27] since if a thin short wire is illuminated 
by a plane wave with the electric field parallel to the wire, the scattered far field is given by 
(see (40)) Ef = beikr/(kr) with (see (59) ) b = SeE°z so that Se is the ratio of the scattered 
field to the incident field. 

The theoretical calculations of the propagation constant ß of the traveling wave based on 
(72) can be verified in part by reference to measurements made by Ehrenspeck and Poehler 
[1] who measured the phase velocity on a Yagi array as a function of the height of the 
directors for two different spacings and two different wire radii. The kd — ßd diagram given 
in Figure 3 plots ßdasa, function of kd and ipe, the phase of the effective scattering coefficient 
Se = \ smil)ee^e. Since the phase velocity is equal to kd/ßd , to compare our theoretical 
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Figure 3: kd-ßd curves for an infinite linear periodic array of short parallel electric dipoles 
perpendicular to the array axis with different values of the phase i/)e of the effective scattering 
coefficient. 
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results with the experimental results of Ehrenspeck and Poehler we need to obtain i>e for 
thin short wires of different heights and radii. This was done using NEC. In Figure 5 we show 
plots of Ve versus wire half-length h/X for short thin wires of three different radii. Figure 
6 shows curves of the theoretical phase velocity of the traveling wave on an infinite array 
of wires with spacing d/X = 0.2 and radii p/X = 0.012 and 0.024 as a function of the wire 
half-length h/X along with experimental values taken from Figure 13 of [1]. Figure 7 shows 
the corresponding curves for a spacing of d/X = 0.4. Considering the difficulty of making the 
measurements the agreement is quite good, especially for the shorter wires. As the length 
of the wires increases the assumption that the fields of the wires are those of elementary 
electric dipoles becomes increasingly inaccurate. 

7    FINITE LINEAR PERIODIC ARRAY OF SMALL 
ELECTRIC DIPOLES PERPENDICULAR TO THE 
ARRAY AXIS 

The traveling-wave propagation constant given implicitly by (72) was found by solving ana- 
lytically the coupled scattering-matrix equations for an infinite linear periodic array of small 
z directed electric dipoles equispaced along the x axis. We used an infinite rather than a 
finite number of identical array elements to derive (72) because only on an infinite array can 
a traveling wave exist alone as an exact homogeneous solution. For a linear periodic array 
with a finite number of these same antenna elements, the same traveling wave can exist, but 
it is always accompanied by the portion of the excitation fields that do not couple to the 
traveling wave and by the fields generated through diffraction from both ends of the finite 
array. In this section we consider such an array of N identical small z directed electric dipole 
elements separated along the x axis by a distance d, as shown in Figure 8. All the antenna 
elements of this linear array except the first one are terminated in a perfectly reflecting load 
with reflection coefficient given by YL = e^. The first antenna in the array is fed by an 
incident waveguide modal coefficient aj. 

We can use the scattering-matrix equations (55)-(56) to derive a set of N linear equa- 
tions for the N unknown outgoing wave coefficients bn for each of the array elements 
(n = 1,2,3, ... TV). The derivation leading to the equations in (62) for the passive elec- 
tric dipole elements in the infinite array applies also to the passive z directed electric dipole 
elements (n = 2,3, ... N) of the finite array. Thus, we can immediately write down N - 1 
of the required equations for the finite array as 

N_        eikd\j-n\ 1 0,    n = 2,3, ...N.        (73) bn       Se g bj k^. _ n|   [1 + My _ n|        (A.d)2|j _ n|2 

The feed-element equation (n = 1) can be found by inserting Ef from (61) into (56) to get 

i 1) N_      eifcd|i-i| 
b*-%b!kdJ=T\ 1 + 

kd\j-l\      (fc<f)2|j-l|s Tal    . (74) 
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Figure 5: Phase tpe of the effective scattering coefficient of a thin perfectly conducting wire 
as a function of the wire half-length h/X. 
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Figure 8: Finite linear periodic array of N short electric dipole antennas (represented by 
the circles) perpendicular to the array axis separated by a distance d along the x axis. The 
waveguides of all the elements of the array are terminated in the perfectly reflecting passive 
load TL = e^L except the first element, which is fed with an incident waveguide modal 
coefficient aj. 
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The solution to the set of N linear equations in (73)-(74) is a trivial matter on a computer. 
It is helpful, however, to specify the scattering-matrix parameters in these equations in a 
convenient form. First, we note that it is unnecessary to specify the transmitting coefficient 
T on the right hand side of (74) because it is multiplied by the one excitation coefficient aj, 
which can be chosen arbitrarily. Therefore, for the sake of simplicity, let 

Tal = 1 (75) 

in (74). Secondly, since Se satisfies (63) and (71), express Se in (73) as 

5e = |sinVeel*«>     0 < ipe < TT. (76) 

Thirdly, use (52) to rewrite S in (74) as 

5,= ||r|sinaeia + i(l-|r|),      0 < a < TT,    0 < T < 1, (77) 
2 4 s 

where 

a^tan-11-^2^-^- (78) sin(2V>r -rfa) 

Consequently, there are four scalar parameters (kd, ij)e, a. and |r|), in addition to the number 
of elements N in the array, that must be chosen to get a numerical solution to (73)-(74). 
We found, however, that the numerical solution to (73)-(74) did not change qualitatively as 
a and |r| were varied over their full range of values. In other words, S in (74), unlike Se in 
(73), is not a critical parameter that must be varied if one merely wants to display different 
representative numerical solutions. In the numerical results shown below, the values of a 
and |r| were set equal to 90° and .5, respectively, so that S has the value of 

S = 1.125i. (79) 

We also found that the solution to a multi-element array does not change qualitatively with 
the number of elements.2 The numerical results shown below that do not depend qualitatively 
on varying N are computed for the representative value of N = 40. This leaves us with just 
two critical parameters, kd and xpe, to specify when solving for the bn in equations (73)-(74). 

Once the bn are computed from (73)-(74), the electromagnetic field radiated by the array 
can be computed from the formulas 

»ifcr   N 

E(r) =r ~°° V- V bne~ikd(n-Veinecos<t>sin6 6 (80a) 
kr n=l 

H(r)=r~°°y0fxE(r) (80b) 
2For example, the number of resonant peaks in Figure 9 would change in approximate proportion to the 

number of elements N, but the height (« 1.3) of the resonant peaks and their cut-off at kd « 2.5 would 
remain about the same. 
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where 9 is the spherical angle that the vector r to the far field makes with the z axis. The 
total power radiated by the array, and the directivity function for the array are given in 
terms of the electric far field by 

p = ^y||rE(r)|^rosin0^d0 (81) 
o o 

BM = to ,»   4*|rE(r)l' ■ C*> 
J7|r£(r)|2sin0d<£d0 
o o 

If only the feed electric dipole element (n = 1) were present in free space, it would radiate 
a power equal to the net power it received from the waveguide, namely 

Po = ^oKl2(i - iri2) (83) 

or in view of (75) and (45) 

The power ratio 
P      3k2 

3k2 

IT   It! 

¥*> (g4) 

n~T = ^//lrEWI-~sin^dö (85) 
0
 n 0 0 

is greater than or less than 1 depending on whether the array radiates more or less power 
than the feed element radiates alone in free space. We can also express TZ in terms of the 
magnitude of the in situ waveguide-mode reflection coefficient I\ looking into the feed electric 
dipole. 

IzJEiÜ. (86) 
i-|r|2 v ; 

where 6j = r\aj and the total power radiated can also be expressed as P = |%laol2(1-lri|2)' 
the power accepted by the feed element, because the array is lossless. If 11 becomes much less 
than 1, the voltage required to feed a fixed amount of power into the array will grow much 
greater than that required to feed the same power into the feed element when it resides alone. 
In other words, H < 1 means that the magnitude of the in situ waveguide-mode reflection 
coefficient |ri| looking into the feed electric dipole (n = 1) is significantly closer to unity 
than its reflection coefficient ,|r| when all the other dipoles (n = 2,3, ... N) are removed. 

Prom (81), (82) and (85) together with (80a) the directivity and power ratio for the finite 
linear array along the x-axis of short z directed dipoles can be calculated respectively from 

and 

y fo e—ikdnsmOcos<f> 
n=l  

2A 

sin20 
  (87) 

Tl = 3A (88) 
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where 

A = ^EN
2
 + JE   E   Mbnb*m}rJo[(m-n)kdsme]sm39d6 (89) 

0 n=l l n=l m=n+l Jo 

and we have made use of the integration formula /o
2irexp(rucos0)d</> = 2nJ0(u) with J0 the 

Bessel function of zero order. The N(N — 1) numerical integrations required to calculate the 
directivity and power ratio can be avoided if instead of the cartesian xyz coordinate system 
we have been using with the x axis along the array axis and the z axis parallel to the electric 
dipoles we switch to a cartesian x'y'z1 system with the z1 axis along the array axis and the x' 
axis parallel to the electric dipoles (i.e., z' = x, x' = z,y' = —y). The directivity and power 
ratio can then be obtained in closed form: 

D(0', <t>') = 

N 2 

Y i e—ikdncos6' 
n=l 

(l-sin20'cosV) 
  (90) 

2A 

and 
Tl = 3A (91) 

where 

A = ^£N2+E    E   Mbnbm*}Unc[(m-n)kd] 
n=l n=l m=n+l \ 

1- 
[(m — n)kd]2 

cos[(ra — n)kd]' 
+   [(m-n)kd]2 

(92)' 

7.1 NUMERICAL RESULTS FOR THE FINITE ARRAY 
The power ratio TZ defined in (85) is plotted as a function of kd in Figures 9 and 10 for 
a 40 element linear array of small z directed electric dipoles equispaced along the x-axis. 
In Figure 9 the phase i{>e of the effective scattering coefficient has been chosen equal to 45° 
and in Figure 10 it equals 135°. In Figure 9 we note that the curve has a region of large 
oscillations followed by a region of small more equally spaced oscillations and ending with 
a non-oscillatory portion. This seemingly curious behavior can be understood qualitatively 
with reference to the kd — ßd diagram of Figure 3. For values of kd between 0.4 and about 
1.2 two distinct traveling waves can be excited, one with a phase constant close to that of 
free space, and the other increasing from ßd equal to about 1.44 to 7r. Apparently the two 
traveling waves can both highly constructively and destructively interfere with each other 
resulting in large oscillations of the power ratio. Also note that one of the traveling wave 
propagation constants is much larger than k. The impedance mismatch of this traveling 
wave as it encounters free space at the ends of the array will be large, and an appreciable 
amount of power will be reflected so that a large standing wave can be supported by the 
array. For kd between 1.2 and a little more than 2.6 only one traveling wave can be excited. 
The propagation constant of this traveling wave is fairly close to k so that the impedance 
mismatch of this wave as it encounters free space at the array ends is not very pronounced 
with the result that the corresponding standing wave has a relatively small amplitude. For 
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Figure 9: Power ratio versus kd for a forty element linear periodic array of short electric 
dipoles perpendicular to the array axis ipe = 45°. 
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Figure 10: Power ratio versus kd for a forty element linear periodic array of short electric 
dipoles perpendicular to the array axis with ipe = 135°. 

31 



kd larger than about 2.6 no traveling wave can be excited and so there are no oscillations 
of the power ratio. The array radiates more or less like the feed element only in free space 
because none of the feed element radiation excites a traveling wave. The scattering excitation 
of the passive elements decreases rapidly with increasing distance from the feed element. 

In Figure 10 the power ratio is plotted as a function of kd for ipe = 135°. Again the 
kd - ßd diagram of Figure 3 can be used to understand the behavior of the curve. For kd 
less than about 0.7, although in principle two traveling waves can exist, one has a propagation 
phase constant almost exactly equal to that of free space and cannot be excited with a small 
feed element. For kd between about 0.7 and 0.8 two traveling wave can be excited resulting 
in the more rapid oscillations of the power ratio. Finally for still larger values of kd no 
traveling wave can be excited and the power ratio slowly approaches the value of 1 for larger 
interelement spacing. 

An interesting feature of Figures 9 and 10 is that the resonant peaks in the power ratio 
never get higher than a value of about 1.3. Therefore, the magnitude of the in situ waveguide- 
mode reflection coefficient |Fi| given in (86) never gets much less than the magnitude of the 
reflection coefficient |r| of the feed element radiating alone in free space. At kd values between 
pronounced resonant peaks, however, the power ratio becomes much less than unity, \Y\\ gets 
much closer to unity than |r|, and it takes a much higher voltage to feed the array with the 
same amount of accepted power as the power accepted at the resonant peaks or when the 
feed antenna is radiating alone in free space. Although the curves in Figures 9 and 10 were 
computed for |r| = .5, the resonant peaks in the power ratio do not exceed a value of about 2 
as |r| -*■ 1. Thus, operating at a resonant peak of the array does not eliminate the difficulty 
of feeding appreciable power into small electric dipoles. To enable more power to be accepted 
and radiated by an array of small elements, Veremey and Mittra [10] have designed each 
small element to be a resonant antenna with a reasonably low reflection coefficient. This 
elemental resonance is superposed on the curves corresponding to those in Figures 9 and 10 
for their arrays. When the elemental resonance occurs near an array resonance, the array 
resonance appears to "split" into two resonances. 

Figure 11 shows two far-field directivity patterns computed from (82) for the 40 element 
array, one with kd = 2.1 and i(>e = 30° and the other for kd = 1.9 and ipe = 63°. Since the 
kd = 2.1 array is a little longer than the kd = 1.9 array it is to be expected that the directivity 
will oscillate more rapidly for the larger array than for the smaller one. Also, referring to the 
kd - ßd diagram of Figure 3 again, we see that the traveling wave propagation constant for 
the array with kd = 2.1 and ipe = 30° is quite close to k and so the associated phase velocity 
is close to the speed of light. In contrast, the phase constant for the array with kd = 1.9 and 
ipe = 63° is considerably larger than k and so the associated phase velocity is considerably 
less than the speed of light. The larger endfire directivity obtained for the array with the 
larger phase velocity is an example of a general trend predicted many years ago by Hansen 
and Woodyard [14]. 

The difference in endfire directivities seen in Figure 11 can be made much less by changing 
the number of elements N for the tpe = 63° array to a value for which the traveling wave 
launched from the end of the array and the feed radiation that is not converted to the 
traveling wave add in phase (or nearly in phase) in the far field at 9 = 0°. Nonetheless, 
the maximum endfire directivity attainable by varying the number of elements in the array 
becomes greater with increasing phase velocity of the traveling wave. We demonstrate this 
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Figure 11: Directivity patterns for a forty element linear periodic array of short electric 
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in Figure 12 in which the maximum directivity in the endfire direction (0 = 0°), obtained by 
varying N from 2 to 100, is plotted versus the normalized phase velocity of the traveling wave 
[v/c = kd/(ßd)] for three different values of kd chosen with reference to Figure 3 so that only 
one traveling wave can be excited. The general increase of the maximum endfire directivity 
with increasing relative phase velocity v/c is in agreement with the prediction of Hansen 
and Woodyard [14] (for closely spaced elements, d/X < 1/3, and ignoring reflections of the 
traveling wave from the ends of the array) and determined experimentally by Ehrenspeck 
and Poehler [1]. Of course, the maximum attainable endfire directivity of a linear array of 
N closely spaced isotropic radiators, for which the magnitude and phase of the excitation 
coefficients of the N elements can be specified arbitrarily, is much larger than the maximum 
attainable endfire directivity shown in Figure 12 for the array with one feed element [28]. 

8    LINEAR PERIODIC ARRAYS OF SMALL ELEC- 
TRIC DIPOLES PARALLEL TO THE ARRAY AXIS 

In Sections 6 and 7 we considered linear periodic arrays of small electric dipole antennas 
perpendicular to the array axis. In this section we investigate linear periodic arrays of small 
electric dipole antennas in which the dipoles are aligned with the array axis. We begin by 
considering the possibility of traveling waves on an infinite array. We consider z directed 
small electric dipoles and take the z axis as the array axis. The nth electric dipole in the 
array is excited by the z component only of the fields radiated by all the other dipoles in 
the array. Similarly to (61), from (35a) and (39) the field in the z direction incident on the 
nth dipole is given by 

+oo pikd\j-n\ / 1 \ 
*? = 2 £ bj-^r- -(-i+       .        ),   n = 0,±l,±2, ...±oo. 

ift    (kd)b - n\2 V kd\3 -n\) 
(93) 

Inserting J?°n from (93) into (59), assuming the existence of a traveling wave (65), and letting 
n = 0 yields the equation similar to (67) 

(kd)3 = 2Se
y£ 
i=i 

+ —^—     -kd\ + -    . (94) 
P 

Using the summation formulas (68c) and (68d) and the approximate summations (69a) and 
(69c) we obtain similarly to (71) and (72), 

|Se|:=^sinVe,   kd<ßd (95) 

and 
-\{kdf cos Ve + {kd [F(kd + ßd) - F(ßd - kd)] + 

O 

[G(kd + ßd) + G(ßd-kd)}}swi>e = 0,   kd<ßd. (96) 
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35 



The implicit expression (96) can be solved numerically for ßd given kd and ipe. Curves of 
ßd vs kd are plotted in Figure 13 for different values of ipe ranging from 0.1° to 170°; see 
(64). In contrast with the kß - kd diagram of Figure 3 for traveling waves on the infinite 
array of short electric dipoles perpendicular to the array axis, here there is only one branch 
of the curve for each value of tpe. All the curves begin at ßd equal to approximately 1.44, the 
value for which G(ßd) = 0 so that (96) is satisfied when kd = 0. Since a horizontal line for 
a constant value of kd intersects one of the curves in only one place, at most one traveling 
wave can be supported by an infinite array of short electric dipoles aligned with the array 
axis. 

Whether in fact it is possible for a traveling wave to be supported on a linear periodic 
array of thin wire scatterers aligned with the array axis depends on the actual value of tpe 

for the thin short wires of a given length 2h and radius p that compose the array. We note 
first that 2h < d where d is the separation of the centers of adjacent wires in the array. 
Additionally the length of the wires should be considerably greater than the wire diameter, 
say 2h > 4p, for the dipole pattern (37) to hold. Thus the wire length, radius, and separation 
must satisfy the inequality 

Akp < 2kh < kd. (97) 

Suppose, for example, that p = 0.024A. Then kp = 0.15 , kh > 0.30, and h/X > 0.05. 
Referring to Figure 5 where we have plotted the phase ipe of the effective scattering coefficient 
versus wire length for wires of different radii we can tabulate h/X, tpe, and 2kh for values of 
h/X > 0.05 

h/X 2kh Ipe 
0.05 0.63 1.04° 
0.06 0.75 1.58° 
0.07 0.88 2.26° 
0.08 1.01 3.13o 
0.09 1.13 4.25° 
0.10 1.26 5.66° 

Now from the second inequality of (97) we see by referring to Figure 13 that the minimum 
value of ipe necessary for a traveling wave to be supported by an array of wires of the given 
half-length h/X is equal to the value of ipe of the kß - kd curve that intersects the kß = kd 
line at kß = 2kh. In all cases it is found that this minimum value of ipe is greater than the 
actual value of tpe tabulated for the wires of the given length and radius. Since this same 
result is found to hold for wires with other values of p we conclude that no traveling wave 
can actually be excited on an array of short thin wires aligned with the array axis (unless 
the thin wires are loaded to substantially increase the value of ipe). 

9    LINEAR PERIODIC ARRAYS OF SMALL ELEC- 
TRIC DIPOLES SKEW TO THE ARRAY AXIS 

In this section we consider linear periodic arrays of small electric dipole antennas in which 
the dipoles are inclined at an angle 90 to the array axis [29] (see Figure 14). The electric 
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Figure 13: kd-ßd curves for an infinite linear periodic array of short electric dipoles aligned 
with the array axis with different values of the phase tf)e of the effective scattering coefficient. 
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Figure 14: Linear periodic array of short electric dipoles oriented at an angle 90 with respect 
to the array axis. 

38 



dipoles are taken to be in the z direction. To investigate the possibility of traveling waves 
on an infinite array we note that the nth electric dipole in the array is excited by the z 
component only of the fields radiated by all the other dipoles in the array. Since the z 
component of the electric field radiated by a short z directed electric dipole is expressed in 
terms of the r and 6 components of the field by 

Ez = Er cos 6 - Ee sin 6, (98) 

similarly to (61), from (35a),(35b), and (39) the field in the z direction incident on the nth 
dipole is given by 

+oo _ifcd|j-n|    r j 

T- E *M7T3 ■*"*-337=3 (W*--*•*) „_„  'kd\j-n\ kd\j — n\ 

+ (^lJ
1-np(2cOs2g0~Sin2g°)]'    " = 0,±l,±2,,..±oo. (99) 

Now it is seen from (99) that if sin2 60 = 2 cos2 6Q or 8Q = arctan \/2 =« 54.74° then the 
higher-order distance terms vanish and we obtain 

ET = i E bj-nr- r . (10°) 

Inserting £*" from (100) into (59), assuming the existence of a traveling wave (65), and 
letting n = 0 yields the equation similar to (67) 

O oo 

kd=-SeJ2 
6    i=i 

ei(fe+/3H'       ei(k-ß)dj 
 : + :  (101) 

Equation (101) is seen to be identical to [13, Eq.(59)], the equation for a linear periodic array 
of small isotropic electroacoustic transducers, with 2/3Se instead of Se. Hence we obtain 
directly 

|Se| = § trin^e>    kd<ßd (102) 

and 
ßd = cos"1 (-Ie-

Mcot* + cos kd\,   kd<ßd. (103) 

Equation (103) gives an exact closed-form expression for the propagation constant ß of 
the traveling wave supported by the linear periodic array of lossless, passive, small electric 
dipole antennas making an angle of do « 54.74° with the array axis, as a function of the 
normalized spacing kd of the dipoles and the phase ipe of the effective scattering coefficient. 
As kd —*0ßd —► 7r/3 independent of ipe. Figure 15, taken from [13], contains curves of ßd 
vs. kd for various values of ipe from 0° to 179°, and shows that there is at most one traveling 
wave for a given value of ipe and normalized spacing kd. Referring to Figure 5 which gives 
curves of ipe as a function of thin wire half-length for several different wire radii, we see that 
there are many different short wires that can be used to form a linear periodic array that 
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kd 

ßd 

Figure 15: kd-ßd curves for an infinite linear periodic array of short electric dipoles oriented 
at an angle 90 = 54.74° with respect to the array axis with different values of the phase tpe 

of the effective scattering coefficient. 
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will support a traveling wave. This conclusion is the opposite of that reached in the previous 
section when the thin wires were aligned with the array axis. Although the kd — ßd diagram 
for traveling waves supported by an infinite array of short dipoles making an angle of « 54.74° 
with the array axis is identical to that for traveling waves supported by an infinite array of 
acoustic monopoles, the power ratio and directivity for a finite array of skewed electric 
dipoles are not the same as for an acoustic monopole array of the same number of elements 
because of the polarization of the dipoles. The equations to obtain the finite array coefficients 
are identical with [13, Eqs.(66)-(67)], that is (73)-(74) with the higher-order distance terms 
omitted, and the remainder of the analysis is the same as for the finite array of dipoles 
perpendicular to the array axis. 

10    CONCLUDING REMARKS 
A general vector spherical-wave source scattering-matrix description of an electromagnetic 
antenna has been formulated. Reciprocity and power conservation are applied to reduce the 
number of independent variables in the coefficients of the scattering matrix. The general 
formulation is then applied to a short z directed electric dipole antenna. While the vector 
spherical-wave harmonic source scattering-matrix formulation of a general electromagnetic 
antenna requires an expansion in an infinite number of vector spherical-wave harmonics, the 
electric field of a short z directed electric dipole antenna can be described with just the 
outgoing Nio (r) and incoming N^) (r) modes. The propagation constant of the traveling 
wave on a linear periodic array of short electric dipole antennas is shown to depend on just 
two parameters — the spacing (in wavelengths) kd of the radiators, and the phase ^e of 
the effective scattering coefficient of the radiators. Three orientations of the electric dipoles 
forming the array were considered: the electric dipoles perpendicular to the array axis, the 
dipoles aligned with the array axis, and the dipoles forming an angle 6Q = arctan y/2 fts 54.74° 
with the array axis. A simple expression for the propagation constant ß of the traveling wave 
was found in terms of kd and ipe in all three cases. When the dipoles are perpendicular to, or 
aligned with, the array axis the expression for the propagation constant is a transcendental 
equation which can be easily solved numerically. When the dipoles are oriented at an angle 
of #o = arctan y/2 with the array axis, a closed form expression for the propagation constant 
can be obtained that is identical to the expression that holds for the traveling wave on an 
array of acoustic monopoles. Curves of the functional dependence of ßd on kd for different 
values of the phase of the effective scattering coefficient i/)e are given for all three cases. 
For the perpendicular array, the relative phase velocity of the traveling wave calculated 
from the kd — ßd diagram using numerical values for the phase of the scattering coefficient 
for thin short wires obtained with the NEC scattering code are in close agreement with 
measurements made by Ehrenspeck and Poehler [1]. If the electric dipoles aligned with 
the array axis are simple short thin wires, the phases of the effective scattering coefficients 
obtained from the NEC code taken in combination with the corresponding kd — ßd diagram 
preclude the possibility any traveling waves being excited. For a Yagi-Uda finite array of N 
electric dipoles perpendicular to the array axis the two parameters kd and tj)e are the only 
critical variables in the solution for the radiation coefficients. 
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Although the scattering-matrix analysis of arrays developed in this paper was applied 
only to arrays of short electric dipoles, the basic formulation applies to any array composed 
of linear, reciprocal, lossless array elements. A preliminary investigation suggests that an 
extension to arrays consisting of small spheres of a given permittivity and permeability is 
feasible. Such spheres can be described in terms of a pair of crossed electric and magnetic 
dipoles and would require four vector spherical wave function modes (two outgoing and two 
incoming) for their description. An extension to electrically larger array elements would 
require more spherical modes to represent their radiated and scattered fields, and thus more 
sophisticated procedures to obtain an efficient numerical solution for both infinite and finite 
arrays. In addition, it seems likely that the present analysis could be extended straight- 
forwardly to two-dimensional linear arrays [30] and to arrays that do not lie in a straight 
line such as closed-loop traveling-wave arrays [12], and to surface or volumetric arrays of 
acoustic and electromagnetic radiators and scatterers (including small resonant scatterers) 
[10], [31]-[33]. 

A    TRAVELING WAVE INEQUALITIES 
Even though the inequalities in (1) are stated in a number of papers, texts, and antenna 
handbooks, we have not seen a proof of (1) for a general periodic array of electrically small 
elements. The second inequality in (1), namely, ßd < ir, follows from the fact that as ßd 
becomes greater than IT the traveling wave can merely be re-expressed as another traveling 
wave propagating in the negative z direction with a ß'd < ir. To see this, simply note that a 
periodic function that satisfies p(x, y,z + d) = p(x, y, z)eißd with ir < ßd < 2TT also satisfies 
p(x, y,z + d) = p(x, y, z)erxß'd with 0 < ß'd = 2n - ßd < ir, which is a wave traveling in 
the -z direction. For 2rc < ßd < Sir, the traveling wave can again be written as a wave 
propagating in the +z direction with a propagation constant having a value less than it. For 
Z-K < ßd< 47T, the traveling wave reverts to a wave propagating in the -z direction with a 
propagation constant having a value less than 7r, and so on. Therefore, the full range of the 
absolute value of the propagation constant of any traveling wave can always be confined to 
a value equal to or less than 7r (see Footnote 1). 

The first inequality in (1) implies that the traveling wave is a slow wave in that the phase 
velocity of the traveling wave is equal to or less than the speed of light. This first inequality 
can be proven for a general linear periodic array of lossless passive electrically small elements 
by looking at the radiation pattern of such an array as the number of elements in the array 
becomes infinite. The far-zone electric field E(r), radiated by a linear array consisting of 
an infinite number of identical antenna elements separated by a distance d from z = — co 
to z = +CO, such that each successive radiating element has the same complex far-zone 
electric field pattern T{Q, $) (which is proportional to the "embedded" element pattern) 
phase shifted by an amount e1/W, is given by 

eifcr 

E(r)r~°° — T(9,<j>) V~*    imd(ß+iq1-kcos6)   ,    V^ e-imdO3-ig2-fccos0) _ j (104) 
jn-0 m=0 

where 9 is the spherical angle measured from the positive z axis.   The far-field formula 
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used in (104) can be derived under the assumption that the sources are either confined to 
a finite region or decay exponentially at large distances from the origin. Thus, the small 
positive imaginary parts, iqt and iq2, of ß have been inserted into (104) to give the sources 
an exponential decay as z approaches plus and minus infinity, respectively. At the end of 
the derivation, qt and q2 are allowed to approach zero. 

Use of the summation formula, ]C~=0£
m = 1/(1 — x), \x\ < 1, converts (104) to 

eifcr 

E(r)^:-;F(M) 
r + z ,a ,-.„ _.   ~ 1 1  gi(/3—fc cos 9)dp—9t        1  g—i(/3—fccos0)dg—q2 

(105) 

In the limit as q1 and q2 approach zero, the quantity inside the square brackets of (105) equals 
0 for (ß — k cos 9)d ^ 2mr, and equals oo for (ß — k cos 9)d = 2nit, n = 0, ±1, ±2, ... ± oo. 
However, the integration of the bracketed quantity in (105) with respect to the variable 
u = (ß — kcos6)d, over limits that cover just the singularity at u = 0, is equal to Air as qx 

and q2 approach zero. The same is true for limits of u that just cover the other singularities 
at 2nir, n = ±1, ±2, ... ±oo. Therefore, as qx and q2 approach zero, the bracketed quantity 
in (105) is simply an infinite sum of delta functions given by 

E(r)r~°°47r—F(0t<f>)  f] 6[(ß - kcos9)d-2mr]. (106) 
n=—oo 

Each of the delta functions in (106) represent power radiated (actually an infinite amount 
of power radiated because the integral of the square of a delta function is infinite) by the 
array at the angles 6 given by the zeroes of the arguments of the delta functions, provided 
the far-field pattern T{9, <f>) does not have a null at these 8 angles for all values of <j). The far- 
field pattern of small (nonresonant) antenna elements will contain no such nulls. Therefore, 
since a passive array carrying a lossless traveling wave cannot radiate and still maintain the 
traveling wave, for arrays of electrically small antenna elements, the arguments of the delta 
functions must not be zero for any 6 other than 6 = 0, the direction of propagation of the 
traveling wave. In particular, if the argument of the n = 0 delta function cannot be zero for 
all 9 ^ 0, then ß > k; that is, the traveling wave is a "slow" wave because its phase velocity 
is less than or equal to the speed of fight. Also, (106) shows that there can be no traveling 
wave unless kd < ir even if ßd is allowed to range from —oo to +oo, provided again that 
there is no null in T{9, (f>) at 9 = 90 > 0 for all <f>. If there is such a null, then a fast wave 
with ßd = kdcos9o may exist even if kd > IT. 

In all we have proven that 
kd<ßd<7T (107) 

for a general infinite linear periodic array of lossless passive antenna elements for which 
there is no 9 > 0 such that !F{9,<t>) = 0 for all (j> -— in particular, for electrically small 
(nonresonant) antenna elements. An analogous proof shows that the same inequalities apply 
also to the propagation constant of the traveling waves on linear periodic arrays of lossless 
passive transducer elements with no 9 > 0 such that the far-field element pattern F{9,4>) — 0 
for all (f>. 

If the element pattern T{9, <f>) of each antenna element does have a null at some 9 — 9Q > 0 
for all 4>, presumably a fast traveling wave with phase velocity greater than the speed of light 
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(ß = A; cos 0o < k) that does not radiate can propagate along the array. If such an array 
were used as a scanning phased array antenna, the array antenna would have a "blind spot" 
at the scan angle equal to the null angle 60 of the element pattern [34]-[37]. 

As a conclusion to this appendix, we shall give an alternative proof that ß > k for far- 
field element patterns having no nulls with respect to 0 > 0. This alternative proof, which 
also reveals that traveling waves on a linear infinite periodic array must decay exponentially 
with radial distance from the axis of the array, begins by expanding the fields outside the 
elements of the array in terms of cylindrical waves. To avoid using vector cylindrical waves, 
assume an array of acoustic elements and express the acoustic pressure outside the elements 
carrying a traveling wave in a complete set of outgoing scalar cylindrical waves [22, ch. 6] 

+00      +°° +00       • f 

p(p, <M =   E       Cn(j)HP(KPy
nWd7 (108) 

n=—oo 

where the H^{Kp) are the cylindrical Hankel functions of the first kind and 

ft = (fc2-7
2)" (109) 

is chosen positive real or positive imaginary. 
Applying the periodic boundary condition for the traveling wave 

p(p,<f>,z + d)=p(p,<l>,z)eil}d (HO) 

and using orthogonality of the ein* and e*** functions converts (108) to 

-f OO +0O 

P{PA,Z)= £   E cmH£HKmP)J»-*m'd>'#* (in) 
n=—oo m=—oo 

with . 
Km = [k2-(ß + 2irm/d)2}-*. (112) 

The cylindrical modes in (111) are also the "Floquet modes" in the parallel plate waveguides 
of width d satisfying the periodic boundary condition (110). 

The cylindrical far-field pattern (that is, the far-field pattern obtained by letting the 
length of the array approach infinity in the ±z directions before letting p -> oo) can be 
found by replacing the Hankel functions in (111) by their large argument asymptotic forms 
to get 

+oo 

y/fip(p14>,z)'hZ0  E Cm(<t>WKß+2*m/d)z+Kmp] (113) 
m=-oo 

in which ,  

Cm(d>) = J-4-*-*"  E H)nOunein*. (114) 

The cylindrical far-field pattern in (113) can be rewritten simply as 

 ■ +00 

yf^~9p{r,6A)r^°   E   On(<£)eifcrcos(0-9m) (H5) 
m= 
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where 
6m = tan" 

Av„ 
(116) 

ß + 2-Km/d' 

If 9m is real, the rath mode in (115) represents a cylindrical wave propagating along 
a cone with half angle equal to 9m. Thus, for (115) to represent the cylindrical far-field 
pattern of a nonradiating traveling wave, all the 9m must be imaginary. That is, the Km 

must be imaginary for all nonzero Cm(<f>). Now (115) also reveals that Cm(<t>) cannot be 
zero for all <f> unless p(r, 9, <f>) (defined by its analytic continuation if 9 is complex) has no 
discrete cylindrical wave traveling in the direction 6 = 6m, or, equivalently, unless the far- 
field pattern of each element in the infinite array has a null at 6 = 9m (for all (j>). In any case, 
the cylindrical far field of a nonradiating traveling wave with e%^z dependence on a linear 
infinite periodic array decays exponentially with radial distance as 

exp [ißz - y/(ß + 2irm1/d)2-k2p] 

7P 
(117) 

as p —► oo, where the integer mi is the index of the slowest exponentially decaying Floquet 
mode that is excited by the array elements. 

Suppose the element far-field pattern has no nulls for real 9 (and all <j>) and Co = 0. Then 
if ß < k, there must be a null in the far-field pattern for real 9 (and all <f>) since Co = 0. 
Consequently, if Co = 0 and the element far-field pattern has no nulls for real 8 (and all </>), 
then ß > k and the only way that Co can be zero is for there to be a null at a complex value 
of 9 (and all <j>) in the analytically continued element far-field pattern. 

B    VECTOR SPHERICAL WAVE FUNCTIONS 
In this Appendix we give the definitions of the vector spherical wave functions M and N used 
in this report. The definitions are those used by Billy Brock [16] adapted for the exp(—iuit) 
time dependence used here: 

MfiW = i N 
(2l + l)(i-ro)l 

4Tvl(l + l)(l + m)\ 

N£(r) = i 
(21 + 1)(Z - ra)! 

\\4Trl(l + l){l + m)\ 

ira   (i) 

sin# 
z\l){kr)P{n(cos9)im,s>e 

+ sm9zM(kr)-Pr(x) 
x=cos0 

eim^ 

(118) 

,» 
^-^-1(1 + l)Pjm(cosö)eim^f 

KV 

kr dr 

J_d_ 
krdr 

[rzii)(kr)]sm9^-Pr(x) 
X=COB0 

4|:h(i)N^^(cos.)e^ 

(119) 
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In (118) and (119) zjp and z{2) are the spherical Bessel and Hankel functions jt and Ä,1 , 
respectively, and P^\x) is the associated Legendre function given by 

Am 

Pr(x) = (-l)m(l-a?)m/2-^Pi(x),m>0, (120a) 

P-W(X) = (-ir^~mlpr(x),m > 0, (120b) 
' (n + ro)! 

where Pi(x) is the Legendre function 

AM-anü?^-* (121) 

The vector spherical wave functions M and N given by (118) and (119) can be defined 
in terms of the normalized radially-independent vector spherical harmonic function Xjm of 
Jackson [15] by 

Mlm(T) = zj»(kr)Xlm(e,<j>) (122) 

and 1 

N£(r) = iv x zP(kr)Xlm(ö,4), (123) 

and are related to the F^ and F$m vector spherical wave functions of Hansen [20] by 

M«(r) = iPÜ(r) (124) 

and 
N£(r) = iFä(r)(f) (125) 

where the superscript i = 1 when c = 1 and the superscript i = 2 when c = 3.3 

C    SUMMATIONS OF TRIGONOMETRIC SERIES 
In this Appendix we discuss the approximations used for the sums of the trigonometric series 

~ sin na „ /,oc •> 
F(a) = £-^2->0<a<7r' (126a) 

and 00 cos na 
G(a)^£^F,0<a<7r. (126b) 

i-i   n' 
Closed form expressions are not available for these sums. The IMSL least-squares approxi- 
mation program FNLSQ was used to compute the approximations 

F(a) « -0.1381 sin a + 0.03212 sin 2a - 0.9653a ln(o/7r),    0 < a < TT, (127a) 
3These relations between the vector spherical harmonics of Brock and those of Hansen are given incorrectly 

in the original form of [16] but have been corrected by Brock in an errata. 
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and 

G(a) « 1.3328 - 0.1424 cos a + 0.01094 cos 2a + 0.4902a2 ln(a/7r) - 0.2417a2,    0 < a < 7r. 
(127b) 

Figures 16 and 17 show F(a) and G(a), respectively, calculated with 1000 terms, along with 
their least squares approximations. The agreement of the approximate with the exact curves 
is excellent. It will be noted that although G'(a) = —F(a), when the approximation for 
G(a) is differentiated the result differs slightly from the negative of the derivative of the 
approximation for F(a). While it is possible to obtain an approximation for F(a) by taking 
the negative of the derivative of the approximation for G(a), the direct least-squares fit 
approximation for F(a) that we have used distributes the errors in the approximation more 
uniformly over the interval from 0 to 7r. 
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Figure 16: F(a) = ]T —— ,  0 < a < 7r, exact and approximate. 
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Figure 17: G(a) = ^ —— ,  0 < a < TT, exact and approximate. 
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